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INTRODUCTION AND NOTATION

The general extremal problem can be described as follows: For given
fixed complex numbers a4, » and z, | z | = 1, and for a given non-negative real
function f(z) defined on the unit circle, it is required to obtain an upper bound
for | ap,(z) + bzp,(z)| where p,(z) varies over the class of all polynomials of
degree not exceeding n which satisfy | p(z)| < f(z) on the circle 'z =1
{l. 31

The case f(z) = | P/z)|, where P,(z) is a polynomial of degree / < # is
dealt with in detail in [3]. Tt is easy to reduce then the problem to the case
f{z) = | P ()| where P,(z) is a polynomial of degree x. all of whose zeros
lie in the closed unit disk.

in the present work we indicate the possibility of strengthening these
results for lacunary polynomials. The precision is made by either diminishing
the region of location of zeros of the polynomials concerned or by increasing
the region of the validity of the relevant inequalities as compared with the
case where no symmetry of the zeros of P,(z) is assumed. In all cases the
results are sharp and include the existing thecrems as special cases.

For p > 1 we shall denote by D, , the image of the disk | { | < p by the
function w({) = nl{/({ — 1), that is
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Similarly, for zy,  z, | = 1and 0 < r < |, we denote by B'};‘;: the image of
the disk | { | < r by the function w({) = z,/{zy — {). For simplicity we set
Bfi};' == B[:G[ , that is
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and

Bl o L] if izl >1

P T TR =T S TaE -1

BJzol =
iw| Rew > % if |zp| =1

One notices that Bi/|*! = By, and that the regions B , By, | decrease
monotonically with increasing | z, |. The complement of a set .S with respect
to the extended complex plane will be denoted by C(S) and the boundary of
S will be denoted by 4S.

Finally for 0 < o <1 we let D}, = —D, , + n where p = 1/o, that is,
ot |w+ T | > s i o<1
D* 1 o 1 G
, gwl Re w > gg if =1
D# , can also be described as the image of the disk | £ | < 1/o by the function

w(l) = nj(l — O).

THE MAIN LEMMA.  Let Q,(2) be a polynomial of degree n(n = 1) whose
zeros zy(k = 1, 2,..., n) all lie in the closed unit disk |z | <1 and such that
Z::l 7 =0.

If

Lw{Qn(Z)} = zQ(2) — W(Z) Qn(Z)

where w(z) € D, , for | z| = p'2, (p = 1) then all the zeros of L,{Q,(2)} lie
in the disk | z | <C p'/2

For w = const. the result is best possible with the polynomial Q,(z) =
C(z* — 1)*2 for even n being extremal for the values w = np[(e?® 4 p)
(0 < 8 << 27). In this case L,{Q,(z)} has at least the two zeros +ip'/2 on the
circumference | z | = p/% and at the same time w traverses the boundary of
D ot

Proof. Obviously L,{Q,(z)} vanishes at a double zero of Q,(z) and
L. {0.(z)} does not vanish at a single zero of Q,(z). Assume Q,(z,) 5= 0.
We have

3

Lw{Qn(ZO)} —
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where w;, = z,/(zy — z) and w* = (1/n) Yys ws . By a result proved in [2],
w* = z/[zy — afz)] where | a(zg)] < 1/l z5 | for | zo ] > 1. It follows there-
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fore that if L {Q.(z)} =0 and izy2 > p, then w* = w(zy)/n. Since
w* e Bi/[%! = By, 1z and w(zy)/n € D,, = C(B,). It follows that

Efzoii N C(Bp) = &

o~
[,
-

a contradiction to the relation B, 2 C B, .
This proves the first part of the lemma. The second part can be verified
directly.

Remark t.  One can isolate the cases when a zero z, of L,{@,(z)} is on the
circle ; z | = pt/2.
We distinguish two possibilities:

(a) p > 1. This implies

‘—;‘— = w¥ e Elzoﬂ ) C(szogz) = G(Eizgfj)

However by hypothesis

1 R
Wt = — € CB‘IZ;IZ"'
Zy — o(zo)

Therefore | a(zy)] = 1/| zo). By Schwarz’s lemma «(z) = ¢*/z. Hence
0.(2)]0.(2) = az/(z2 — 1) and Q,(z) = C - (z2 — 1)*/2, The extremal poly-
nomials are of even degree. The value of w can be calculated from the equa-
tion L,{Q,(z0)} = 0.w = nz?/(zy? — 1) traverses the circle | w — np?/{p? — 13| =
npl(p? — 1) as zy? runs through the circle | z | = pi/2

(b) |zy] =p =1. Here we can have the case of a double zerc of
0.(2). If bowever Q,(z,) == 0 then the conditions Re w < n/2, Re wy. = /2.
and w* = (1/n) 3 w, imply that Re w = #/2, Re w, = L. That is all the =
lie on the unit circle. The extremal case is similar to (a).

Remark 2. One verifies easily from the proof of the lemma that if we
assume that all the zeros of Q,(z) be in the disk {z || z| < 1} then all the
zeros of L,{0,.(2)} lie in the disk {z | | z | < pt/2}.

Remark 3. As mentioned the lemma is sharp only for even degree
pelynomials Q,(z). It will be interesting to investigate the case of odd degree
polynomials.

We mention briefly two corollaries.

COROLLARY 1. If L0, (zo)t =0, Q,{(z,) # 0 for some =4 with ' zy| = |
then

%%—é%) € C(Dlzu“’,n)-
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Proof. Thisfollows by the proof of the lemma from the relation w* Elzolz-

CoROLLARY 2. (Generalization of Szegd’s theorem). Applying the main
lemma with w(z) = nz/(z — {) we have:

Let Q,(2) be a polynomial of degree n(n = 1) with zeros z; with | z;. | <
S 1z, = 0. Let zy and [ be two numers such that | zy | = land | { | = 1| z, L.
Then

(£ — zy) O0(z0) + nQn(z0) =0
only if
(@) { = ezyand Q. (2) = C(z® — &%),
(0) zi(| zo | = 1) is double root of Q,(z).
© z="0zl=[01=1) and Q,(z) = 0.

THE MAIN RESULTS

THEOREM 1. Let P(z) be a polynomzal of degree n(n = 1) whose zeros z,,
all lie in the disk | z | < 1 and let ¥_; z;, = 0.

Let Z, be the family of all polynomials p,(z) = Y1 axz* with a,_, = 0,
that satisfy | pz)] <|P(2)lon|z| =1

Let p(p > 1) be fixed and let a and b be arbitrary complex numbers such
that either b =0 or albe D, ,, .

Then for | = | = p'/?

| bzpi(z) — apu(2)| < 1bzP(z) — aP,(2)| (2)

for all p,e 2, .
Proof. Since the function p,(2)/P,(z) is regular in the region | z| > 1 and
since | p2)/P(2)] < 1on|z| =1 itfollows that either p,(2)/P,(z) = const.
or | pz)] < | P(2)| for | z| > 1. The first case is trivial so we consider only

the second case. Let {(j £ | << 1) be fixed. The zeros of Q,(2) = {p.(2) + P (z)
areallin | z| < 1 and their sum vanishes. Hence by the main lemma applied
to the polynomial Q,.(z) and w = a/b we have

ALpi() + Pu@] — 5 [pale) + Pu] =0 for |z| = p'2

and | {| << 1. Therefore || |bzp,(2) — ap,(z)| < |bzP,(2) — aP(2)|.
Letting | { | — 1 we obtain the desired result.
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COROLLARY 3. In particular case when a =n-p, b=p+1 {p = 1}
P2y = Mz"(M > 0) we obtain the inequalify

(p + 1) zp(2) — npp.(z), < Mn |z |

Laha’fm 21 = pY2 and for p, € P, which satisfy |p(2) < Mon | 7| = L
For p | 1 we obrain the well known inequalities | 2zp'(z) ~— np,(z)| < Mn = »
for | z) == 1 (See [3] p. 393)

THEOREM 2. Let P {z) be a pol}nomlal of degree nin = 1) whose zeros =,
all lie in the disk | z | < 1 and let ¥;_; z, = 0.

Let p(z) = T y_; ayz* be an arbitrary polynomial of degree not exceeding
such that a,_, = 0. If S is the image of the region | z| = 1 by the ﬁmczaf
P2y Pz} and if the numbers a and b are such that either b = 0 o b = § and
albeD,,  thenforallz, z! > p'? (p = 1)

Lipl2)  apu(z) — bzpa(z) _ ¢
LiP(2);  aPy(z) — bzP(z)

Proof. Let K be any closed circular region disjoint from S and let the
function = (aw + B)/(yw — 3) map K onto the disk | {| < 1. Tt follows
that

;::—I’g ‘ > 1 for weSs.
Therefore
D‘[pn(z)/Pn(Z)] -+ B £ o
| P PP £ | =1 for izl
Or

| ypu(2) = 0P (2)] <1 apy(z) — BPu(z)]

for all | z| = 1. This implies that all the zeros of ap,{z) + BP,.(z) lie in the
disk | | < I and their sum vanishes. By Theorem 1

| yL{pa(2)} + SL{P N < aLipnz)} + BLIP(2)}]

for |z = pl2
From this we conclude that

Lip2)} | & G 1w
(P, )} K for 'z = pt2

Since K is an arbitrary circular region disjoint from §, the result follows,
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Remark 4. Theorem 1 applied to polynomials z?P,(1/z) and z"p,(1/z)
where P/(z) = ZLO a,z*, a; = 0 is a polynomial which does not vanish in
|z] <1 and p(2) = Ypo brzt, by = 0 m < n and £ < n yields the relation
@) for |z < o2 (0 <o < 1) provided | p,(2)] < | PAz) on [z]| =1 and
either b =0 orajbe D*

[ PY 2

COROLLARY 4. For given M >0, [{| =1, 0 <o <1 we have
(ljot? — *) po(2) + np (2] < Mn for | z| < ' and for every polynomial
Pul2) = Ty by2* with by = 0 satisfying | p(2)l < Mon |z | = 1.

Proof. Fora=n,b =1 — {ja*?z we have a/b = n/l — {/zo'/? and for
| z| = &2 a/b belongs to the image of the circle | | = 1/o by the function
w({) = nj(1 — {), that is on the boundary of D}, . Hence, letting a = n,
b =1 — {jo'?z, P,(z) = M we obtain from (2)

(o5 — 2) 5@ + )| < Mn for |z] <o

Hence

i | P&+ | (D) — i) < M.

Remark. Foro—0wehave |by| +2(b,|/In <M

For every polynomial p,(z) = Y r_, b.2" satisfying | p(2)] < Mon|z| =1
we have | by| + §1b,| < M. To prove the last relation let K(0) =
1 + $(e*? — e2%9)., Then (1/2#) fgr K(0)df =1 and || p.(e”) x Kll, <M
which yields | by | + | b, | < M.

We may generalize our main results for arbitrary lacunary polynomials.
To this end the main lemma will be replaced by the following:

LeMMA. Let Q,(2) = 2" + ap_p 2" P14 -+ a2+ ay (p=1) be a
polynomial whose zeros all lie in the closed unit disk | z | < 1.

If LdQu2)} = 204(2) — W(z) Qu(z) where w(z)€ D, , for | z| = plro+d
(p = 1), then all the zeros of L,SQ,.(2)} lie in the disk | z | < pt/(#+1),

Proof. Noticing that a,_,==0 (k =1, 2,..., p) yields the equalities
St Tt =0 (k =1, 2,..., p) where z,,(m = 1, 2,..., n) are the zeros of Q,,
we have from [2], the notation as in the proof of the main lemma, w* =
Zo/[2o — o(z5)] where | afzy)| < 1f| z, |7 for | z,| > 1. One notices that
B{l/[%!" = By, j>+1 and arguing as in the proof of the main lemma we com-
plete the proof.

By this lemma Theorem | and Theorem 2 can be generalized as follows:



AN EXTREMAL PROBLEM FOR POLYNOMIALS 233

THEOGREM 1. Let Pz) =" + G, 2" P 4 o L am+ g, (p =i

be a polynomial whose zeros lie in the disk |z~ < 1.
Let P, be a family of all polynomials p,(z) = 4,77 — @, ;7" = < =
&z = ay(p = 1,a, 5= 0) that satisfy | p(2)] < | P2 on|z| =1

Let plp > 1) be fixed and let a and b be arbitrary complex numbers such that
either b =0 oralbe D, , .
Then for |z = pt/(?+8

| bapi(z) — apa(2)} < | bzPi(5) — aPu(2) oy

Jor all py = 2,

Taeorem 2. Let P,(z) and p,(z) be polynomills as in Theorem 1,

If S is the image of the region | z | =1 by the function p{z)|P.(z) and if
the numbers a and b are such that either b =0 or b =0 and albe D, ,,
then for all zV = | = pt2+l (p = 1)

Lipl2) _ apn(z) — bep(z) <
L{P(2)}  aPy(2) — bzP(z) =

"

Remark 4. Theorem 1" applied to polynolials z%p,(1/z} and z"P/A1/=}
where PAc} = ay + a, 427t + - +— .2 is a polynomial which does not
vanish in | 2| <1 and p,(2) = by + b, =" — -+ + b,z where n = m,
r >/ yields a relation as (2) for |z <ol'mD (0 <o < 1) provided

[p. 2} < Pdz)lon|z| =1andeither b =0 ora/be D—jn .
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